Infinite-energy solutions to energy-critical nonlinear Schrödinger equations in modulation spaces

نویسندگان

چکیده

We prove new well-posedness results for energy-critical nonlinear Schrödinger equations in modulation spaces. This covers initial data with infinite mass and energy. The proof is carried out via bilinear refinements adapted function

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A minimal energy tracking method for non-radially symmetric solutions of coupled nonlinear Schrödinger equations

We aim at developing methods to track minimal energy solutions of time-independent mcomponent coupled discrete nonlinear Schrödinger (DNLS) equations. We first propose a method to find energy minimizers of the 1-component DNLS equation and use it as the initial point of the m-component DNLS equations in a continuation scheme. We then show that the change of local optimality occurs only at the b...

متن کامل

Infinite Energy Solutions for Dissipative Euler Equations in R 2

We study the system of Euler equations with the so-called Ekman damping in the whole 2D space. The global well-posedness and dissipativity for the weak infinite energy solutions of this problem in the uniformly local spaces is verified based on the further development of the weighted energy theory for the Navier–Stokes and Euler type problems. In addition, the existence of weak locally compact ...

متن کامل

Stability of Energy-critical Nonlinear Schrödinger Equations in High Dimensions

We develop the existence, uniqueness, continuity, stability, and scattering theory for energy-critical nonlinear Schrödinger equations in dimensions n ≥ 3, for solutions which have large, but finite, energy and large, but finite, Strichartz norms. For dimensions n ≤ 6, this theory is a standard extension of the small data well-posedness theory based on iteration in Strichartz spaces. However, i...

متن کامل

Existence of solutions of infinite systems of integral equations in the Frechet spaces

In this paper we apply the technique of measures of noncompactness to the theory of infinite system of integral equations in the Fr´echet spaces. Our aim is to provide a few generalization of Tychonoff fixed point theorem and prove the existence of solutions for infinite systems of nonlinear integral equations with help of the technique of measures of noncompactness and a generalization of Tych...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Analysis and Applications

سال: 2023

ISSN: ['0022-247X', '1096-0813']

DOI: https://doi.org/10.1016/j.jmaa.2022.126748