Infinite-energy solutions to energy-critical nonlinear Schrödinger equations in modulation spaces
نویسندگان
چکیده
We prove new well-posedness results for energy-critical nonlinear Schrödinger equations in modulation spaces. This covers initial data with infinite mass and energy. The proof is carried out via bilinear refinements adapted function
منابع مشابه
A minimal energy tracking method for non-radially symmetric solutions of coupled nonlinear Schrödinger equations
We aim at developing methods to track minimal energy solutions of time-independent mcomponent coupled discrete nonlinear Schrödinger (DNLS) equations. We first propose a method to find energy minimizers of the 1-component DNLS equation and use it as the initial point of the m-component DNLS equations in a continuation scheme. We then show that the change of local optimality occurs only at the b...
متن کاملInfinite Energy Solutions for Dissipative Euler Equations in R 2
We study the system of Euler equations with the so-called Ekman damping in the whole 2D space. The global well-posedness and dissipativity for the weak infinite energy solutions of this problem in the uniformly local spaces is verified based on the further development of the weighted energy theory for the Navier–Stokes and Euler type problems. In addition, the existence of weak locally compact ...
متن کاملStability of Energy-critical Nonlinear Schrödinger Equations in High Dimensions
We develop the existence, uniqueness, continuity, stability, and scattering theory for energy-critical nonlinear Schrödinger equations in dimensions n ≥ 3, for solutions which have large, but finite, energy and large, but finite, Strichartz norms. For dimensions n ≤ 6, this theory is a standard extension of the small data well-posedness theory based on iteration in Strichartz spaces. However, i...
متن کاملExistence of solutions of infinite systems of integral equations in the Frechet spaces
In this paper we apply the technique of measures of noncompactness to the theory of infinite system of integral equations in the Fr´echet spaces. Our aim is to provide a few generalization of Tychonoff fixed point theorem and prove the existence of solutions for infinite systems of nonlinear integral equations with help of the technique of measures of noncompactness and a generalization of Tych...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Analysis and Applications
سال: 2023
ISSN: ['0022-247X', '1096-0813']
DOI: https://doi.org/10.1016/j.jmaa.2022.126748